
Payva et al. Thyroid Research           (2025) 18:15  
https://doi.org/10.1186/s13044-025-00230-1

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Thyroid Research

Systems biology approach delineates critical 
pathways associated with papillary thyroid 
cancer: a multi‑omics data analysis
Febby Payva1,2*, Santhy K. S.2*, Remya James1,2, Amrisa Pavithra E2 and Venketesh Sivaramakrishnan3* 

Abstract 

Background  Papillary thyroid cancer (PTC) is the most prevalent follicular cell-derived subtype of thyroid cancer. 
A systems biology approach to PTC can elucidate the mechanism by which molecular components work and interact 
with one another to decipher a panoramic view of the pathophysiology.

Methodology  PTC associated genes and transcriptomic data were retrieved from DisGeNET and Gene Expression 
Omnibus database respectively. Published proteomic and metabolomic datasets in PTC from EMBL-EBI were used. 
Gene Ontology and pathway analyses were performed with SNPs, differentially expressed genes (DEGs), proteins, 
and metabolites linked to PTC. The effect of a nucleotide substitution on a protein’s function was investigated. Addi-
tionally, significant transcription factors (TFs) and kinases were identified. An integrated strategy was used to analyse 
the multi-omics data to determine the key deregulated pathways in PTC carcinogenesis.

Results  Pathways linked to carbohydrate, protein, and lipid metabolism, along with the immune response, signaling, 
apoptosis, gene expression, epithelial–mesenchymal transition (EMT), and disease onset, were identified as signifi-
cant for the clinical and functional aspects of PTC. Glyoxylate and dicarboxylate metabolism and citrate cycle were 
the most common pathways among the PTC omics datasets. Commonality analysis deciphered five TFs and fifty-
seven kinases crucial for PTC genesis and progression. Core deregulated pathways, TFs, and kinases modulate critical 
biological processes like proliferation, angiogenesis, immune infiltration, invasion, autophagy, EMT, and metastasis 
in PTC.

Conclusion  Identified dysregulated pathways, TFs and kinases are critical in PTC and may help in systems level 
understanding and device specific experiments, biomarkers, and drug targets for better management of PTC.
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Introduction
According to the International Agency for Research on 
Cancer (IARC), thyroid cancer (TC) incidence ranks 
seventh on the basis of global cancer statistics (https://​
www.​wcrf.​org/​cancer-​trends/​world​wide-​cancer-​data/). 
However, it accounts for thirteenth and fifth among men 
and women, respectively [1]. Papillary thyroid cancer 
(PTC) is the most predominant type of thyroid cancer. It 
belongs to the well-differentiated follicular cell-derived 
malignant neoplasm subtype. In 2022, the World Health 
Organization (WHO) updated the classification of PTCs 
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into classical PTCs, encapsulated classic PTCs, infiltra-
tive follicular PTCs, diffuse sclerosing PTCs, solid/tra-
becular PTCs, warthin like PTCs, oncocytic PTCs, clear 
cell PTCs, spindle cell PTCs, PTCs with fibromatosis/
fasciitis-like/desmoid-type stroma, tall cell PTCs, hobnail 
PTCs, and columnar cell PTCs [2]. The tall cell, hobnail 
and columnar cell subtypes were the most aggressive 
types of PTC. The primary cause of PTC carcinogen-
esis is the deregulation of the PI3K/AKT and mitogen-
activated protein kinase (MAPK) pathways, which are 
essential for gene expression, cell signaling, proliferation, 
mitosis, cell survival, and apoptosis [3].

Diagnostic methodologies such as two-dimensional 
(2D) ultrasound (US), three-dimensional (3D) (US) scan-
ning technology, and adjunct imaging techniques such 
as CT scanning and magnetic resonance imaging (MRI) 
followed by laboratory evaluation have improved the 
risk stratification of TC [4]. Fine needle aspiration biopsy 
(FNAB) is critical in PTC risk mapping via the Bethesda 
system of thyroid cytopathology reporting [5]. Extrathy-
roidal extension (ETE) in PTC can be better revealed by 
molecular markers [6].

The drastic progress in PTC diagnostic and treatment 
techniques over the past decade has improved patient 
outcomes and disease-free survival rates. Although total 
thyroidectomy with radioactive iodine (RAI) therapy as 
a postsurgical follow-up remains inevitable in advanced 
and metastatic tumors, a less extensive partial thyroid-
ectomy and significantly reduced adjuvant RAI therapy 
in tumors up to 4  cm in size offer sound and adequate 
management in low-risk cT1N0M0 PTC patients [7, 8]. 
Ambulatory thyroidectomy reduces economic costs and 
hospitalization without compromising the safety of PTC 
treatment [9].

Studies have revealed the increasing incidence of 
unnecessary thyroidectomies in PTC patients due to the 
overdiagnosis and uncertainty of malignancy. Systems 
biology, whose roots can be traced since the early twenty-
first century, can be used to address this issue. The sys-
tem biology approach elaborates on the mechanism by 
which molecular components work and interact with 
one another and the environmental factors to decipher a 
panoramic view of the system as a whole. This highlights 
the intricacy of the interdependent biological networks 
that govern how genotype, phenotype, and environment 
interact [10]. Recent high-throughput analysis and multi-
omics have improved our understanding of the molecular 
landscape of thyroid cancer, and its clinical application 
is expected to improve risk stratification, personalized 
treatment, and patient outcomes [11]. Multi-omics pro-
filing of papillary thyroid microcarcinomas (PTMC) 
has revealed a unique signature of PTMC inflammation 
enriched with AFP mutations, elevated immune-related 

genes, and positive thyroglobulin and peroxidase anti-
bodies that implies distinct biological and clinical char-
acteristics that require different interventions [12]. 
Integrative multi-omics analysis of different thyroid can-
cers, such as BRAF-like PTC, RAS-like follicular thyroid 
cancer (FTC), and anaplastic thyroid cancer (ATC)-like, 
has been conducted to substantiate the metabolic differ-
ences among various types of thyroid cancer [13].

This paper integrated all the available significant tran-
scriptomic, proteomic, and metabolomic datasets in 
PTC, comparing diseased vs. normal datasets for the first 
time. PTC-associated single-nucleotide polymorphisms 
(SNPs), differentially expressed genes, proteins, and 
metabolites were binned into significant pathways with 
potential implications in PTC pathophysiology. The func-
tional and clinical effects of these SNPs were also deter-
mined, and the transcription factors (TFs) and kinases 
responsible for modifying the PTC tumor microenvi-
ronment (TME) were elucidated. The TFs, kinases, and 
integrated pathways from different levels of multi-omics 
data analysis were linked to the clinical outcomes of PTC. 
Therefore, an approach to target metabolism in PTC and 
cope with its plasticity and resistance is promising for the 
treatment of thyroid cancer.

Materials and methods
Single nucleotide polymorphism (SNP) analysis
Significant genes and specific SNPs associated with PTC 
were retrieved from DisGeNET. 83 genes and 111 SNPs 
were curated. SNPs were curated after the exclusion of 
introns and synonymous variants. DisGeNET (http://​
www.​disge​net.​org/) is a knowledge platform that col-
lates and standardizes information on genes and their 
variants of clinical relevance from manifold resources. It 
has curated and integrated normal and abnormal traits 
of a wide range of human diseases [14]. The SNP analy-
sis of the missense mutations in the exon region was 
performed via web-based tools, including the ClueGO 
plugin of Cytoscape 3.10.2, SIFT, PolyPhen-2, and SNP 
Nexus. The significant parent pathways and the clini-
cal outcomes associated with PTC were analysed via the 
ClueGO plugin of Cytoscape 3.10.2 (https://​apps.​cytos​
cape.​org/​apps/​cluego).

SIFT (sorting intolerance from tolerance) (https://​sift.​
bii.a-​star.​edu.​sg/) predicts the effect of a nucleotide sub-
stitution in the coding region on the function of a pro-
tein [15]. In the present study, the curated dbSNPs of 
PTC were predicted for their impact on the pathogen-
esis of PTC. The amino acid substitutions with a SIFT 
score <  = 0.05 were recorded as ‘deleterious’, indicating 
high conservation, and those with a score > 0.05 were 
recorded as ‘tolerated’, indicating low conservation.

http://www.disgenet.org/
http://www.disgenet.org/
https://apps.cytoscape.org/apps/cluego
https://apps.cytoscape.org/apps/cluego
https://sift.bii.a-star.edu.sg/
https://sift.bii.a-star.edu.sg/
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PolyPhen-2 (Polymorphism Phenotyping v2) (http://​
genet​ics.​bwh.​harva​rd.​edu/​pph2/) is a software used to 
annotate the SNPs in coding sequences [16]. The impact 
of SNVs on the function of a protein is analysed. The 
PolyPhen-2 computes the score, including the sequen-
tial and structural components of the SNP, which range 
between 0.0 and 1.0. The SNVs that have values close 
to 0.0 are predicted as benign, and those close to 1.0 as 
probably damaging.

SNPnexus (https://​www.​snp-​nexus.​org) is an annota-
tion tool used to predict genome sequence variation [17]. 
Among the various applications of SNPnexus are genome 
mapping, impact on protein function, phenotypic and 
disease connection, structural variation, pathway analy-
sis, and clinical interpretation. Reactome pathway enrich-
ment was also carried out, and the results were plotted.

The pathway enrichment and gene ontology of the cel-
lular component (CC) and biological process (BP) terms 
were performed via Enrichr (https://​maaya​nlab.​cloud/​
Enric​hr/) [18], whereas the molecular function (MF) 
terms were annotated via WebGestalt (WEB-based GEne 
SeT AnaLysis Toolkit) (https://​www.​webge​stalt.​org/).

Analysis of transcriptomic data
Six gene expression datasets of PTC were curated from 
the Gene Expression Omnibus (GEO) (http://​www.​
ncbi.​nlm.​nih.​gov/​geo). Datasets specifically compar-
ing diseased to normal traits were selected from human 
(GSE138198 [19], GSE3678 [20], GSE9115 [21], GSE6339 
[22]); transgenic mouse (GSE58689 [23], GSE118022) 
[24]); and cell line studies (GSE6339) via the GPL570 
platform (Affymetrix Human Genome U133 Plus 2.0 
Array).

Curation and enrichment analysis of Differentially 
expressed genes (DEGS)
DEGs were identified via the GEO2R web tool (http://​
www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r) with the cut-off cri-
teria adj. P value < 0.05. Enrichment analysis of DEGs 
from each dataset was performed via Enrichr. A gene 
ontology study was also performed on each dataset. Sig-
nificant metabolites were also predicted from the DEGs. 
Molbiotools (https://​molbi​otools.​com/​listc​ompare.​php) 
was used to find the significantly dysregulated pathways 
shared across the datasets.

Retrieval of transcription factors and kinases using X2K
DEGs were analysed for putative TFs and kinases linked 
with PTCs via eXpression2Kinases (X2K) (https://​maaya​
nlab.​cloud/​X2K/). It is an online tool for kinase enrich-
ment analysis, protein‒protein interaction subnetwork 
development, transcription factor enrichment analysis 

(TFEA), and TF‒kinase interaction network construction 
[25].

Analysis of proteomic data
Proteomic studies enable an understanding of protein 
functions, interactions, and modifications, which is piv-
otal for providing holistic insight into biological systems. 
Five published PTC proteomics datasets, three tissue-
based datasets [26–28], one plasma dataset [29], and one 
serum dataset [30], were analysed to elucidate the poten-
tial pathways enriched in PTC. Proteins with two-fold 
changes and adj. P values < 0.05 were screened for path-
way enrichment analysis via Enrichr.

Analysis of metabolomic data
Metabolomic studies play a significant role in systems 
biology, and they integrate with other omics data to pro-
vide a comprehensive overview of the pathophysiology of 
a disease. Analysis of PTC tissue, serum, urine, and faecal 
metabolites could reveal potential biomarkers and targets 
for PTC. In the present study, four tissue datasets [31–
34], three serum datasets [35–37], one urine dataset [35], 
and one faecal dataset [38] from published PTC metabo-
lomic datasets were evaluated. Two PTC cell line works 
( [39, 40] were also analysed. The web-based tool Meta-
boAnalyst 6.0 (https://​www.​metab​oanal​yst.​ca/) was used 
for metabolite enrichment analysis to identify the signifi-
cant metabolic pathways associated with PTC.

Integration of PTC associated OMIC datasets
All the significant pathways in each of the human tran-
scriptomics, proteomics, and metabolomics datasets 
were pooled. A commonality analysis of the pooled path-
ways between human SNPs, transcriptomics, proteomics, 
and metabolomics associated with PTC was conducted 
to identify the pathways with potential implications in 
PTC pathophysiology. TFs, kinases, and dysregulated 
pathways were linked to clinical outcomes in PTC by lit-
erature mining.

Results
SNP analysis deciphers potential mutations and critical 
pathways in PTC
The SNPs associated with PTC pathogenesis were 
curated from the DisGeNET database [41]. Eighty-three 
genes and 111 SNPs curated were used for the analy-
sis. Critical PTC-related pathways were identified; these 
pathways were associated primarily with the immune sys-
tem, signal transduction, DNA repair, programmed cell 
death, gene expression (transcription), haemostasis, and 
disease onset (Fig. 1a) and were clustered, and exhibited 
as Reactome pathway enrichment graph (Supplemen-
tary Fig. 1). Additionally, the SNPs were linked to clinical 

http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://www.snp-nexus.org
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://www.webgestalt.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
https://molbiotools.com/listcompare.php
https://maayanlab.cloud/X2K/
https://maayanlab.cloud/X2K/
https://www.metaboanalyst.ca/
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parameters relevant to PTC. These included blood cell 
counts, thyroid cancer, thyroid-stimulating hormone 
(TSH) levels, autoimmune thyroid disease, vitamin D 
levels, and deficiency, as well as other cancers (Fig.  1b). 
SNP analysis revealed the impact of the mutation on pro-
tein function (Supplementary Table 1). SNP enrichment 
analysis was performed to streamline the critical KEGG, 
WIKI, and Reactome pathways and decipher the CC and 
BP associated with these genes, as shown in Supplemen-
tary Fig. 2. The enriched BP included positive regulation 
of intracellular signal transduction, phosphorylation, cell 
population proliferation, migration, gene expression, 
macromolecule metabolic processes, and DNA repair. 
These genes were integral components of the plasma 
membrane, intracellular membrane, nucleus, autophago-
some, and phosphatidylinositol 3-kinase complex. 
Molecular function includes receptor binding, protein 
kinase activity, and transmembrane signaling recep-
tor activity (Fig.  1c). The significant SNPs were binned 
into 135 pathways with potential implications in PTC 
(adjusted P value < 0.05) (Supplementary Table 2).

Transcriptomic dataset analysis identifies signific DEGs, 
TFs, Kinases and pathways critical for PTC
Six relevant datasets—4 human datasets (GSE138198, 
GSE3678, GSE9115, and GSE6339), two transgenic 
mouse datasets (GSE58689 and GSE118022), and one 
cell line dataset (GSE6339)—were filtered from the 
whole set of 341 thyroid cancer-related series in the 

NCBI GEO database. Each dataset was carefully evalu-
ated, and only those comparing PTC samples with nor-
mal controls were shortlisted for R analysis. The human 
datasets GSE138198, GSE3678, GSE9115, and GSE6339 
yielded 4552, 1517, 787, and 468 DEGs, respectively, with 
adjusted p values of less than 0.05. While the cell line 
study (GSE6339) produced 1987 DEGs, the mouse model 
datasets; GSE58689 and GSE118022 produced 5571 and 
9357 DEGs, respectively. The DEGs from each dataset 
were binned into significant pathways (adj. P value < 0.05) 
associated with PTC (Supplementary Table  3). Com-
parison of human transcriptomic datasets revealed sig-
nificant common pathways associated with signaling, 
immune response, epithelial-mesenchymal transition 
(EMT), and cancer pathways as shown in Supplementary 
Table  3d. A comparative analysis of the human, mouse 
model, and cell line datasets revealed 23 shared pathways 
(Fig. 2 and Supplementary Table 3e).

Gene ontology analysis revealed the involvement of 
these DEGs in biological processes, cellular components 
and molecular functions (Supplementary Table 3f ) asso-
ciated with the pathophysiology of PTC. The GO and 
significant metabolites of GSE138198 (Supplementary 
Fig. 3), GSE3678 (Supplementary Fig. 4), GSE9115 (Sup-
plementary Fig.  5), GSE6339 (Supplementary Fig.  6 and 
7), GSE58689 (Supplementary Fig.  8), and GSE118022 
(Supplementary Fig. 9) were identified. Metabolites pre-
dicted from the DEGs in various transcriptomic datasets 
(Supplementary Table 3 g) were found to be significantly 

Fig. 1  SNP analysis: a Top 60 significant pathways of all PTC-associated SNPs from ClueGo analysis; b PTC-associated clinical outcomes and genes 
involved; c Molecular function analysis of the exonic SNPs predicted by WebGestalt
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associated with energy metabolism, oxidative stress, 
electron transport chain, and signal transduction. The 
common metabolites predicted were exhibited in Supple-
mentary Table 3 h.

As indicated in Supplementary Table  4, potential TFs 
and kinases involved in the pathophysiology of PTC 
were shortlisted in each of the human datasets. The most 
important of these were then vetted by analysing the TFs 
and kinases shared by all or most human datasets being 
examined. As shown in Fig. 3, a total of five TFs and fifty-
seven kinases typical of all human datasets were deter-
mined to be the most important and crucial components 
in PTC genesis and progression.

Proteomic data analysis screens PTC‑associated significant 
differentially expressed proteins (DEPs) and deregulated 
pathways
Significantly differentially expressed proteins were short-
listed from published proteomic works in PTC tissue, 
plasma, and serum samples. Three tissue-based and one 
each from plasma and serum were analysed to elucidate 
the potential pathways enriched in PTC. A total of 1438 
DEPs were pooled from the tissue datasets, whereas 121 
and 18 DEPs were screened from the PTC plasma and 
serum datasets, respectively. Pathway enrichment analy-
sis was conducted to identify significant pathways that 
were dysregulated (Supplementary Table  5). Fc gamma 
R-mediated phagocytosis, bacterial invasion of epithelial 

cells, regulation of the actin cytoskeleton, leukocyte trans 
endothelial migration, adherens junction, shigellosis, 
tight junction, pathogenic Escherichia coli infection, and 
antigen processing and presentation were the nine most 
essential pathways commonly observed in tissue-based 
PTC studies (Fig.  4). While cholesterol metabolism was 
prevalent in the tissue and serum PTC proteomic data, 
complement and coagulation cascades was the only 
pathway that was categorized similarly across the tissue, 
plasma, and serum datasets, as shown in Fig. 5.

Metabolomic data analysis screens PTC‑associated 
significant metabolic pathways
Metabolomic data analysis plays a vital role in under-
standing the involvement of major metabolic pathways 
in disease pathophysiology. PTC-associated metabolomic 
studies of tissue, serum, urine, faeces, and cell lines were 
performed, and the significantly upregulated and down-
regulated metabolites were screened in each study. These 
metabolites were binned into significant metabolic path-
ways (adj. P value < 0.05 and FDR < 0.25) critical in PTC, 
as shown in Supplementary Table 6. Glyoxylate and dicar-
boxylate metabolism; alanine, aspartate, and glutamate 
metabolism; and aminoacyl-tRNA biosynthesis were the 
common metabolic pathways identified in the tissue-
based studies (Fig. 6), whereas the biosynthesis of unsatu-
rated fatty acids was the most common among the serum 
samples. One carbon pool associated with the folate 

Fig. 2  Commonality analysis of significant pathways: a human datasets GSE138198, GSE3678, GSE9115 and GSE6339; b mouse model datasets 
GSE58689 and GSE118022; c cell line (BCPAP) dataset; d Venn diagram showing the overlap of human, mouse and cell line datasets
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Fig. 3  Analysis of transcription factors and kinases of the human transcriptomic datasets GSE138198, GSE6339, GSE9115 and GSE3678: Venn 
diagram showing the overlap of transcription factors and kinases

Fig. 4  Pathway analysis of differentially expressed proteins (DEPs) in tissue between PTC patients and healthy controls via Enrichr
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pathway was enriched in the urine samples, whereas glyc-
erophospholipid metabolism and glycerolipid metabolism 
were substantially enriched in the faecal analysis (Fig. 7). 

Alanine, aspartate and glutamate metabolism; the citrate 
cycle (TCA cycle); and glycolysis/gluconeogenesis were 
prominent in the PTC cell line studies.

Fig. 5  Pathway analysis of differentially expressed proteins in plasma and serum between PTC patients and healthy controls via Enrichr 
and a commonality analysis of deregulated pathways in human proteomic samples

Fig. 6  Enrichment analysis of human tissue metabolomic studies of PTC patients compared with healthy controls
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Human and cell line metabolomic datasets associated 
with PTC were compared, and approximately nine cru-
cial metabolic pathways were found to be similar, while 
eight and ten unique pathways were observed in humans 
and cell lines, respectively, as shown in Supplementary 
Table  6d. Commonality analysis of the human metabo-
lomic data is shown in Fig. 7.

PTC multi‑omics dataset integration highlights crucial 
pathways in PTC tumorigenesis
Integration of significant pathways of human SNPs, tran-
scriptomics, proteomics, and metabolomic data analysis 
is substantial in identifying the pathways with the most 
potential implication in the pathophysiology of PTC. 
TCA cycle and glyoxylate and dicarboxylate metabolism 
were found to be shared among the PTC-transcriptomic, 
proteomic, and metabolomic dataset analysis, while 
many protein, carbohydrate, and nucleic acid metabolic 
pathways, signaling pathways, EMT pathways, and dis-
ease pathways were identified as altered in the process 
of PTC progression as shown in Table  1 and Fig.  8 a. 
The integration of the combined disrupted pathways of 
human, mice and cell line datasets at different levels of 
OMICs were also done and is exhibited in Fig. 8 b. The 
significant dysregulated metabolic pathways, and TFs 
were linked to PTC’s clinical outcomes, as shown in 

Fig.  9 and Supplementary Table  7 a and b while poten-
tial  kinases were linked  to PTC  as depicted in  Supple-
mentary Table 7 c.

Discussion
SNPs have various implications for PTC tumorigenesis 
and progression [42]. Our study revealed the connection 
of the PTC-linked SNPs to the parent pathways associated 
with the immune system, signal transduction, DNA repair, 
programmed cell death, gene expression (transcription), 
haemostasis, and disease onset. Previous studies have 
investigated the role of molecular signaling cascades [43] 
and the importance of immune-related genes and cells in 
modifying the PTC microenvironment [44].

PTC transcriptome research has revealed increased 
immune signaling involving cytokines or T cells and an 
upregulated CD8 + T-cell and Th1 cell biomarkers. The 
recurrent and dedifferentiated advanced PTCs dem-
onstrated an overexpression of genes associated with 
immune escape signaling pathways in addition to the 
PI3K and MAPK signaling pathways [45]. The integra-
tion of all the dysregulated pathways of the various tran-
scriptomic datasets in the present study substantiated 
the idea that cytokine immune pathways (Th17 cell dif-
ferentiation and chemokine signaling), molecular signal-
ing pathways (AGE-RAGE, PI3K-Akt, P53, and MAPK 

Fig. 7  Enrichment analysis of human metabolomic studies (serum, urine, and faeces) of PTC patients compared with healthy controls 
and a commonality analysis of deregulated pathways in human metabolomic samples
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signaling pathways), as well as pathways related to can-
cer, infection, metabolism, and EMT, are key factors in 
the tumorigenesis of PTC. Our analysis revealed enrich-
ment of focal adhesion, ECM-receptor interaction, and 

proteoglycans in cancer pathways, all of which contribute 
significantly to the EMT process and cause inflammation, 
invasion, and metastasis [46, 47] in PTC [48].

Table 1  Integrated dysregulated pathways from PTC-associated human multi-OMICs data

Human_PTC_transcriptomic ∩ Human_PTC _proteomic ∩ Human_PTC _metabolomic Citrate cycle (TCA cycle)
Glyoxylate and dicarboxylate metabolism

Human_PTC _proteomic ∩ Human_PTC _metabolomic Alanine aspartate and glutamate metabolism
Aminoacyl-tRNA biosynthesis
Arginine and proline metabolism
Butanoate metabolism
Fructose and mannose metabolism
Glycine serine and threonine metabolism
Glycolysis/Gluconeogenesis
Pentose phosphate pathway
Phenylalanine metabolism
Propanoate metabolism
Pyruvate metabolism
Synthesis and degradation of ketone bodies
Tyrosine metabolism
Valine leucine and isoleucine degradation

Human_PTC_transcriptomic ∩ Human_PTC_metabolomic Glycerolipid metabolism

Human_PTC _metabolomic ∩ Human_PTC_SNPs Inositol phosphate metabolism

Human_PTC_transcriptomic ∩ Human_PTC _proteomic ∩ Human_PTC_SNPs Bacterial invasion of epithelial cells
Focal adhesion
Human papillomavirus infection
Necroptosis
Nonalcoholic fatty liver disease
PI3K-Akt signaling pathway
Pathogenic Escherichia coli infection
Pathways of neurodegeneration
Prion disease
Proteoglycans in cancer
Small cell lung cancer
Yersinia infection

Human_PTC_transcriptomic ∩ Human_PTC _proteomic Arrhythmogenic right ventricular cardiomyopathy
Diabetic cardiomyopathy
ECM-receptor interaction
Fc gamma R-mediated phagocytosis
Glutathione metabolism
Platelet activation
Tight junction
Viral myocarditis

Human_PTC_proteomic ∩ Human_PTC_SNPs Adherens junction
African trypanosomiasis
Alzheimer disease
Amoebiasis
Apoptosis
Central carbon metabolism in cancer
Complement and coagulation cascades
Coronavirus disease
Estrogen signaling pathway
Ferroptosis
Fluid shear stress and atherosclerosis
HIF-1 signaling pathway
Malaria
Regulation of actin cytoskeleton
Salmonella infection
Shigellosis
Thermogenesis
Thyroid hormone synthesis
Viral carcinogenesis
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Metabolic features differ relative to the molecular 
framework determined by the nature of the mutation. 
This paper’s combined transcriptomic, proteomic, and 
metabolomic PTC data analysis revealed dysregulation of 
the TCA cycle, and glyoxylate and dicarboxylate metabo-
lism. Metabolic reprogramming, which is crucial in PTC 
pathogenesis, involves increased dependence on glycoly-
sis and changes in the TCA cycle and biosynthesis of fatty 
acids and amino acid metabolism. The TCA cycle is the 
primary source of energy (ATP), and intermediates like 
citrate for fatty acid biosynthesis. TCA cycle dysregula-
tion also resists targeted therapy in PTC [49]. Upregula-
tion of glutaminolysis leads to an increase in glutamine 
breakdown into α-ketoglutarate, which is an intermediate 
of the TCA cycle and helps to maintain energy in tumor 
cells for proliferation and metastasis [50, 51]. Glyoxylate 
and dicarboxylate metabolism was another significant 
pathway dysregulated in the analysis, which was vali-
dated in serum amino acid profiling in PTC0 patients in 
previous works on the basis of differential expression of 
glycine, glutamine, and glutamic acid [52] This pathway 
is also linked to other cancers, such as prostate cancer 
[53], and gastric cancer [54]. Glyoxylate and dicarboxy-
late metabolism are closely interconnected to the TCA 
cycle by shared intermediates, such as malate. These dys-
regulated pathways help cancer cells cope with nutrient 
stress.

Fourteen pathways were found common between pro-
teomic and metabolomic PTC data. The carbohydrate, 
amino acid, and fatty acid metabolism pathways were 
influential. Glycolysis/gluconeogenesis and the pen-
tose phosphate pathway (PPP) were the most significant 
pathways. The upregulation of glycolysis/gluconeogen-
esis pathways in tumors indicates glucose reprogram-
ming. The gluconeogenic enzymes phosphoenolpyruvate 

carboxykinase 1 (PCK 1) and phosphoenolpyruvate car-
boxykinase 2 (PCK 2) play key roles in cancer metabo-
lism [55]. According to the Warburg effect, the cancer 
cell may rely on aerobic glycolysis to satisfy the increased 
energy demand. The upregulation of glycolysis via 
HIF-1α signaling initiated by the PI3/Akt/mTOR path-
way may lead to a decrease in glucose and an increase 
in AMP levels. This activates AMP-activated protein 
kinase (AMPK), which may promote catabolic pathways 
to increase the ATP production required for cancer pro-
liferation and metastasis [56]. HIF-1α signaling and the 
PI3K/Akt/mTOR pathway were also found significant 
and upregulated in our PTC omics data analysis. Next 
significant pathway is PPP, which is important in the syn-
thesis of ribonucleotide precursors and NADPH. Cancer 
cells spare glucose for the PPP to manage energy demand 
and oxidative stress. Targeting the PPP increases reactive 
oxygen species (ROS) levels and induces apoptosis in thy-
roid cancer [57]. Glycolysis and the PPP acidify the TME, 
which promotes invasion and metastasis by destroying 
the extracellular matrix (ECM), and promoting EMT and 
angiogenesis [58].

Many amino acid metabolic pathways, such as ala-
nine, aspartate, and glutamate metabolism; arginine 
and proline metabolism; glycine serine and threonine 
metabolism; phenylalanine metabolism; and valine, 
leucine, and isoleucine degradation, were found dysreg-
ulated in the present study. Altered amino acid metabo-
lism is a hallmark of cancer origin. Amino acids act as 
donors of carbon and nitrogen under nutrient-deprived 
conditions and fuel tumor cells, and they are the source 
for the de novo biosynthesis of lipids, purines, and 
pyrimidines, which are crucial for tumor survival and 
progression. Amino acids are also involved in cell sign-
aling, cancer immunity, angiogenesis, transcription 

Fig. 8  Comparative analysis of dysregulated pathways of a) human-PTC SNP, transcriptomic, proteomic and metabolomic datasets b) combined 
human, mouse model and cell line PTC datasets at different OMICs level
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Fig. 9  Summary of multi-omics studies exhibiting the deregulated pathways, and transcription factors and their influence on the biological 
processes associated with PTC
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regulation, epigenetic modification, and metabolic reg-
ulation [59]. Amino acid metabolomics in saliva can be 
used as a non-invasive diagnostic method for thyroid 
cancer detection [60].

The amino acids glutamine, arginine, and aspartate 
play significant roles in tumor maintenance. Glutamine is 
converted to glutamate, which, in turn, upon transamina-
tion or deamination, is converted to α-ketoglutarate, an 
intermediate of the TCA cycle, which plays a vital role 
in cancer energetics and epigenetic modification. Purine 
and pyrimidine biosynthesis from glutamine is a source 
for DNA biogenesis and repair in the TME. Glutamate is 
also responsible for maintaining oxidative balance. Glu-
tamine-derived phosphoenolpyruvate (PEP) generates 
acetyl Co-A in the nutrient-deficient TME and feeds the 
TCA cycle to sustain the energy demands of a cancer cell 
[61]. Arginine enters via cationic amino acid transporters 
(CAT) or can be synthesized from aspartate and citrul-
line in the urea cycle. Nitric oxide (NO) produced from 
arginine in the presence of nitric oxide synthase-2 (NOS-
2) increases angiogenesis and suppresses the immune 
response. In PTC, NO induces vascular endothelial 
growth factor (VEGF-D) and is associated with lymph 
node metastasis [62]. Aspartate, which is interconvert-
ible with asparagine, is a limiting metabolite in cancer 
progression under hypoxia [63]. This amino acid plays a 
significant role in the biosynthesis of proteins and nucle-
otides that are essential for tumor progression and EMT.

Oncometabolite-like branched-chain amino acids 
(BCAAs) valine, leucine, and isoleucine are elevated 
in thyroid cancers [64]. Since essential, the transporter 
for these amino acids, L-type amino acid transporter 1 
(LAT1), are crucial for tumor survival and are upregu-
lated in thyroid cancer cells, making them potential 
therapeutic targets for PTC treatment [65]. The valine, 
leucine, and isoleucine degradation pathways are sig-
nificant in PTC, as they produce succinyl-CoA and 
acetyl-CoA, which enter the TCA cycle for excess ATP 
generation. The addition of acetyl-CoA to the TME can 
lead to protein acetylation and epigenetic modification. 
Leucine stimulates the mTOR pathway, which is critical 
in PTC [66, 67].

Serine/glycine plays a critical role in cancer cells. They 
are the primary carbon donors for the folate cycle, which 
is important for the biosynthesis of proteins, lipids, and 
nucleic acids; cellular homeostasis; and methylation 
reactions [68]. One carbon enters one-carbon metabo-
lism from serine in the presence of serine hydroxy meth-
yltransferase (SHMT 2) in mitochondria. SHMT2 is 
involved in PTC metastasis by activating the Akt signal-
ing pathway [69].

Lipid metabolic pathways like glycerolipid metabo-
lism, propanoate metabolism, pyruvate metabolism, and 

synthesis and degradation of ketone bodies were found 
significant in PTC and is discussed in Supplementary 
Table 7a.

Focal adhesion, proteoglycans in cancer, cell adhe-
sion molecules, axon guidance ECM-receptor interac-
tions, adherens junctions, and tight junctions were the 
EMT pathways dysregulated in the PTC omics analy-
sis. All these pathways are crucial in the transition from 
E-cadherin-expressing differentiated epithelial cells to 
mesenchymal cells, which are the least differentiated 
and express vimentin, N-cadherin, and fibronectin. EMT 
associated immunohistochemical markers Ki-67 is highly 
expressed in advanced PTC [70].

Transcription factors are proteins that bind to particu-
lar DNA and control its expression, and are essential for 
cellular activities such as growth, proliferation, differenti-
ation, and death. In many malignancies, reprogramming 
and dysregulation of these TFs may fuel carcinogenesis. 
The development of practical approaches to directly and 
indirectly target TFs in cancer treatment is difficult; these 
approaches include focusing on protein‒protein inter-
actions, the DNA-binding domain, and proteasomal 
degradation [71]. Previous studies have examined the 
important roles that the thyroid-specific TFs NKX2-1, 
FOXE1, and PAX8 play in the development and spread of 
thyroid cancer [72]. All the human datasets we examined 
showed shared dysregulation of ESR1, GATA1, NFE2L2, 
SOX2, and TCF3. The nuclear membrane estrogen recep-
tor 1 (ERα) protein, which controls cell development and 
metabolism when it binds to estrogen, is expressed by 
the transcription factor ESR1. ESR1 was linked to cen-
tral lymph node metastasis in PTC patients with positive 
BRAF protein expression, and it was elevated in males, 
young patients, and multifocal patients. PTC patients 
with BRAF mutations had lower overall survival rates 
when ESR1 expression was higher [73]. ERα overexpres-
sion induces proliferation, autophagy, and metastasis 
in PTC, whereas ERβ is proapoptotic [74]. ERα, HIF1α 
(hypoxia), and nuclear factor-κB (NFκB) (inflamma-
tion) are linked in the processes of PTC origin, metasta-
sis, and cancer immunity [75]. GATA binding protein 1 
(GATA1) is a transcription factor that binds to particular 
DNA locations and promotes the proliferation, matura-
tion, and differentiation of RBCs and megakaryocytes 
[76]. GATA1 binds histone deacetylase 2 (HDAC2) to the 
promotor of nuclear receptor binding protein 2 (NRBP2), 
a tumor suppressor, and causes histone deacetylation, 
which inhibits its expression and increases angiogenesis 
and TME markers in PTC [77]. In ovarian, breast, and 
colorectal cancers, among other cancers, GATA1 has 
crucial regulatory functions in angiogenesis, invasion, 
metastasis, and proliferation [78–80]. The transcription 
factor NFE2L2/NRF2 (Nuclear factor erythroid-derived 
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2-like 2) is essential for angiogenesis, immunological 
infiltration, and the body’s reaction to oxidative stress. 
It attaches itself to the antioxidant response elements 
(AREs) found in the promoters of genes that express anti-
oxidant proteins. In PTC, NRF2 is significantly active 
and controls angiogenesis, antioxidant transcriptional 
responses, and cell survival [81, 82]. Another putative TF 
that binds to lncRNA LINC01510 promoter and increases 
LINC01510 expression in PTC is SRY-box transcription 
factor 2 (SOX2), which has antiapoptotic and functional 
implications for invasion, migration, and proliferation 
[83]. The sonic Hedgehog pathway regulates SOX2 at 
the transcriptional level and promotes thyroid cancer 
stem cell-driven PTC [84]. By promoting EMT transition 
through the modulation of the WNT/β-catenin signaling 
network, SOX2 facilitates lymph node and distant metas-
tasis [85–87]. Transcription factor 3 (TCF3) is the next 
important TF in PTC. It helps reduce the disease-free 
lifespan in PTC by regulating the overexpression of the 
oncogene HOXD9, which impacts immunological signal-
ing pathways, in conjunction with EZH2. Oncogenesis, 
recurrence, and treatment resistance are caused by the 
correlation of HOXD9 with the NF-κB signaling pathway, 
which in turn triggers the MAPK signaling pathway [88].

Transcription factors ZBTB7A, PARD, TP53, TRIM28, 
GATA2, SUZ12, and SALL4 were found common to three 
of the human transcriptomic datasets under study, which 
were also considered significant in PTC. Zinc finger and 
BTB domain-containing 7A (ZBTB7A/FBI-1/Pokemon) 
play significant roles in tumorigenesis and metastasis 
across various cancer types [89]. ZBTB7A/Pokemon 
expression is linked to PTC carcinogenesis, and because 
it negatively regulates aerobic glycolysis, ZBTB7A/Poke-
mon expression inversely correlates with PTC tumor 
size [90]. The next significant TF, PARD (peroxisome 
proliferator-activated receptor delta), mediates nuclear 
receptor signaling and transcriptional suppression. In 
thyroid cancer, PPARD stimulates cell proliferation via a 
mechanism dependent on cyclin E1 [91]. Cell division, 
angiogenesis, apoptosis, metastasis, tumor metabo-
lism, and the immunological response are all impacted 
by PPARD [92]. The transcription factor p53 (TP53) 
responds to cellular stress (such as hypoxia, DNA dam-
age, and spindle damage) by altering its protein level and 
post-translational modification state. ATM, ATR, Chk1, 
and MAPK phosphorylation are among the mechanisms 
that activate p53 [93]. More than 80% of ATCs have p53 
gene mutations, which are crucial in the development of 
thyroid tumors from well-differentiated (papillary and 
follicular) to poorly differentiated (anaplastic) TCs [94]. 
In addition to causing the p53 protein to lose its tumor 
suppressor function, p53 mutations, especially those 
that occur in "hot spots", such as R175H and R273H, also 

confer protein oncogenic properties that promote angi-
ogenesis, metastasis, and cell proliferation [95]. Tran-
scription intermediary factor-β (TIF1β), also known as 
TRIM28 (tripartite motif containing 28), contributes to 
the development of tumors by poly-ubiquitinating and 
degrading substrates such as AMPK, RLIM (RING fin-
ger LIM-domain-interacting protein), and SUMOylating 
PD-L1 (programmed cell death ligand 1). TRIM28 is far 
more prevalent in thyroid cancer patients than in healthy 
controls [96].

In this study, GATA2, SUZ12, and SALL4 were also 
identified as significant in PTC. Although previous 
researches have shown that these TFs were linked to sev-
eral malignancies, there hasn’t been any direct link found 
in the literature between PTC and these TFs. GATA 
binding protein 2 (GATA2) is a transcription factor 
linked to the immunological response and hematopoie-
sis. GATA2 has been investigated in relation to the inva-
sion, cell motility, and metastasis of many malignancies, 
including prostate, colorectal, and breast cancer [97–99]. 
SUZ12 (SUZ12 polycomb repressive complex 2 subunit) 
is a critical element of the polycomb repressive com-
plex 2 (PRC2), which methylates histone H3 and causes 
transcriptional suppression of the impacted target gene. 
In numerous malignancies, including colorectal, gastric, 
and small-cell lung cancer, SUZ12 has been connected 
to invasion, metastasis, and proliferation [100–102]. 
SUZ12 regulation is essential for the epigenetic process 
of BRAF(V600E)-driven thyroid cancer carcinogenesis, 
both transcriptionally and post-transcriptionally [103]. 
SALL4 is a stem cell regulator that, when overexpressed, 
promotes cancer, proliferation, and metastasis by regu-
lating mitochondrial oxidative phosphorylation genes 
and the Wnt/β-catenin, PI3K/AKT, and Notch signal-
ing pathways. It inhibits the apoptotic pathway of Bcl-2 
family proteins. It is linked to the immune response in 
the development of tumors and affects hematopoiesis 
through an epigenetic mechanism [104].

Protein kinases play a role in PTC by regulating signal-
ing pathways that affect cell survival, transformation, and 
antiapoptotic effects. The present work identified typi-
cal kinases from all the human PTC GEO datasets under 
study. The significant kinases involved in PTC patho-
physiology belongs to CDK, CHEK, MAPK, CSNK, JNK, 
CDC, ERK, PRK, GSK, RPS6KA, DNAPK, and TGFBR2 
families. The implications of these significant kinases 
in PTC tumorigenesis are discussed in Supplementary 
Table 7c.

The present in-silico multi-omics data analysis was able 
to identify deregulated pathways, TFs, and kinases in 
PTC that were prevalent across datasets, taxa, method-
ologies, populations, and study setting confirming their 
significance. The functional implication of the identified 
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pathways was validated using literature mining and 
were found to modulate the biological processes associ-
ated with PTC. However, the data obtained need to be 
experimentally validated in larger cohorts. Despite the 
limitation, these core pathways, TFs, and kinases identi-
fied may act as critical drug targets and biomarkers, and 
could be employed in future research to precisely identify 
non-invasive diagnostic methods and individualized PTC 
treatment plans. Pre-clinical and clinical research should 
follow in order to apply these significant in-silico insights 
to clinical practice.

Conclusion
PTC is the most prevalent endocrine cancer affect-
ing the follicular cells of the thyroid gland. The present 
work analysed the SNP, transcriptomic, proteomic, and 
metabolomic data of PTC via an integrative approach. 
The study identifies TFs and kinases, as well as signifi-
cant deregulated pathways at varying OMIC levels asso-
ciated with PTC and further based on literature it helps 
to validate the potential role of these in PTC progression 
and prognosis. Glyoxylate and dicarboxylate metabo-
lism and the citrate cycle were the most common path-
ways across the PTC omics datasets. The commonality 
analysis deciphered five TFs and fifty-seven kinases cru-
cial for PTC genesis and progression. Further, the data 
also help to show that the core pathways are conserved 
across datasets, taxa, methodologies, populations, and 
study settings. Though, the findings are not validated in 
a larger cohort, we believe that the present study helps 
to provide a systems level understanding and might help 
to device specific experiments to comprehend the role of 
deregulated pathways as potential biomarker and thera-
peutic targets in PTC. The deregulated pathways, TFs, 
and kinases modulate critical biological processes like 
proliferation, angiogenesis, immune infiltration, invasion, 
autophagy, EMT, and metastasis in PTC.
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